Dave Gershgorn | Quartz | December 1, 2016 | 0 Comments

Google Proved AI Can Reshape Medicine


A doctor’s work isn’t all done in examination rooms. Many specialists spend lots of time alone with the lights out, examining photographs that reveal their patients’ internal workings.

That might soon change. A paper by Google published in the Journal of the American Medical Association details an algorithm that can detect when someone has developed blindness as a result of diabetes, trained and tested by board-certified ophthalmologists. It shows algorithms can, at least in the case of this particular affliction, make a diagnosis with an accuracy on-par with medical professionals,

A key difference between this research and previous papers on medical imaging by large tech companies is its publication and defense by a respected medical journal like JAMA.

Concurrent with Google’s paper, JAMA also published an article translating the finding for medical professionals and urging the community that this is a good thing—algorithms can let doctors spend more time with patients, rather than reading scans.

It seems likely that these algorithms will reshape specific aspects of these specialties as more algorithms are developed to address a wider range of medical imaging tasks. Because these algorithms are by their nature standardized, repeatable and scalable, they can be deployed to analyze a large number of images in hospitals around the world once an algorithm has been developed and validated, enabling clinicians to focus on other aspects of their practice.

After writing a lengthy blog post Nov. 27 detailing how machines can’t yet beat doctors, radiologist Luke Oakden-Rayner saw the Google research and was forced to concede his point.

“I remain convinced that we have yet to see a machine outperform a doctor in any task that is relevant to actual medical practice,” Oakden-Rayner wrote. Sentences later, he continues, “While I was writing this, literally this last paragraph, it became untrue.” (Emphasis his.)

The reason why Google’s work is so good, he writes, is because it paid to create a good set of data—a panel of certified ophthalmologists hand-graded nearly 130,000 images—to teach the algorithm.

Now that the method has been shown effective, others can copy the technique in different domains—radiology seems a likely target—and start the machinations towards eventual clinical adoption. The algorithm itself was not built on any proprietary information— it was first trained on an open-source image set, then refined on the medical images.

There’s still has a long way to go before algorithms are making real diagnoses in hospitals—they’ll have to clear clinical trials. Google says it's now working with the Food and Drug Administration (the governing body in the U,S. for this kind of test) and other regulatory agencies to work on building trials. The search giant’s sister company, Alphabet-owned DeepMind, is working closely with the U.K.’s National Health Service on similar retinal image analysis, and AI’s application in cancer treatment.


Thank you for subscribing to newsletters from Nextgov.com.
We think these reports might interest you:

  • Modernizing IT for Mission Success

    Surveying Federal and Defense Leaders on Priorities and Challenges at the Tactical Edge

  • Communicating Innovation in Federal Government

    Federal Government spending on ‘obsolete technology’ continues to increase. Supporting the twin pillars of improved digital service delivery for citizens on the one hand, and the increasingly optimized and flexible working practices for federal employees on the other, are neither easy nor inexpensive tasks. This whitepaper explores how federal agencies can leverage the value of existing agency technology assets while offering IT leaders the ability to implement the kind of employee productivity, citizen service improvements and security demanded by federal oversight.

  • Effective Ransomware Response

    This whitepaper provides an overview and understanding of ransomware and how to successfully combat it.

  • Forecasting Cloud's Future

    Conversations with Federal, State, and Local Technology Leaders on Cloud-Driven Digital Transformation

  • IT Transformation Trends: Flash Storage as a Strategic IT Asset

    MIT Technology Review: Flash Storage As a Strategic IT Asset For the first time in decades, IT leaders now consider all-flash storage as a strategic IT asset. IT has become a new operating model that enables self-service with high performance, density and resiliency. It also offers the self-service agility of the public cloud combined with the security, performance, and cost-effectiveness of a private cloud. Download this MIT Technology Review paper to learn more about how all-flash storage is transforming the data center.


When you download a report, your information may be shared with the underwriters of that document.